Detection of gaseous plumes in IR hyperspectral images using hierarchical clustering.

نویسندگان

  • Eitan Hirsch
  • Eyal Agassi
چکیده

The emergence of IR hyperspectral sensors in recent years enables their use in remote environmental monitoring of gaseous plumes. IR hyperspectral imaging combines the unique advantages of traditional remote sensing methods such as multispectral imagery and nonimaging Fourier transform infrared spectroscopy, while eliminating their drawbacks. The most significant improvement introduced by hyperspectral technology is the capability of standoff detection and discrimination of effluent gaseous plumes without need for a clear reference background or any other temporal information. We introduce a novel approach for detection and discrimination of gaseous plumes in IR hyperspectral imagery using a divisive hierarchical clustering algorithm. The utility of the suggested detection algorithm is demonstrated on IR hyperspectral images of the release of two atmospheric tracers. The application of the proposed detection method on the experimental data has yielded a correct identification of all the releases without any false alarms. These encouraging results show that the presented approach can be used as a basis for a complete identification algorithm for gaseous pollutants in IR hyperspectral imagery without the need for a clear background.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting the Detectability of Thin Gaseous Plumes in Hyperspectral Images Using Basis Vectors

This paper describes a new method for predicting the detectability of thin gaseous plumes in hyperspectral images. The novelty of this method is the use of basis vectors for each of the spectral channels of a collection instrument to calculate noise-equivalent concentration-pathlengths instead of matching scene pixels to absorbance spectra of gases in a library. This method provides insight int...

متن کامل

Spectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms

Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...

متن کامل

Improving the RX Anomaly Detection Algorithm for Hyperspectral Images using FFT

Anomaly Detection (AD) has recently become an important application of target detection in hyperspectral images. The Reed-Xialoi (RX) is the most widely used AD algorithm that suffers from “small sample size” problem. The best solution for this problem is to use Dimensionality Reduction (DR) techniques as a pre-processing step for RX detector. Using this method not only improves the detection p...

متن کامل

Detection of Gaseous Plumes using Basis Vectors

Detecting and identifying weak gaseous plumes using thermal imaging data is complicated by many factors. There are several methods currently being used to detect plumes. They can be grouped into two categories: those that use a chemical spectral library and those that don't. The approaches that use chemical libraries include physics-based least squares methods (matched filter). They are "optima...

متن کامل

Detection and tracking of gas plumes in LWIR hyperspectral video sequence data

Automated detection of chemical plumes presents a segmentation challenge. The segmentation problem for gas plumes is difficult due to the diffusive nature of the cloud. The advantage of considering hyperspectral images in the gas plume detection problem over the conventional RGB imagery is the presence of non-visual data, allowing for a richer representation of information. In this paper we pre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied optics

دوره 46 25  شماره 

صفحات  -

تاریخ انتشار 2007